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Summary

Causal inference is hard due to the fundamental problem of causal
inference. You have to make assumptions to gain leverage.
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Fundamental Problem of Causal Inference.

The approach we will discuss is known as the Rubin Causal Model
or the Potential Outcomes framework. Here’s the terminology:

Let Yi (0) be the outcome of interest under control – i.e., no
treatment.

Let Yi (1) be the outcome of interest under treatment.

The causal effect we are after is Yi (1)− Yi (0).

And Yi (0) and Yi (1) are the potential outcomes.

Let’s look at an example.
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Fundamental Problem of Causal Inference (ctd).

In an ideal world, we would see this:

Uniti X 1
i X 2

i X 3
i Ti Yi (0) Yi (1) Yi (1)− Yi (0)

1 2 1 50 0 69 75 6
2 3 1 98 0 111 108 -3
3 2 2 80 1 92 102 10
4 3 1 98 1 112 111 -1
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Fundamental Problem of Causal Inference (ctd).

But in the real world, we see this:

Uniti X 1
i X 2

i X 3
i Ti Yi (0) Yi (1) Yi (1)− Yi (0)

1 2 1 50 0 69 ? ?
2 3 1 98 0 111 ? ?
3 2 2 80 1 ? 102 ?
4 3 1 98 1 ? 111 ?
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Fundamental Problem of Causal Inference (ctd).

The fundamental problem of causal inference is that at
most only one of the two potential outcomes Yi (0) or Yi (1)
can be observed for each unit i .

For control units, Yi (1) is the counterfactual (i.e.,
unobserved) potential outcome.

For treatment units, Yi (0) is the counterfactual.

For this reason, some people (including Don Rubin) call
causal inference a missing data problem.
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Differing Views of a Cause

Within the potential outcomes framework there is some debate
over how to think about casual inference:

Effects of Causes vs. Causes of Effects

“No Causation without Manipulation”

Envision the ideal experiment

Section 10: Causal Inference



Causal Inference is Hard Classical Randomized Experiments Observational Data

Quantities of Interest

Before we talk about solutions, note that we might be interested in
the following quantities of interest

The individual treatment effect: Yi (1)− Yi (0)

The average treatment effect (ATE):
E [Y (1)− Y (0)] = E [Y (1)]− E [Y (0)]

The treatment effect on the treated (ATT):
E [Y (1|T = 1)− Y (0|T = 1)] = E [Yt(1)− Yt(0)]

At this point, all of them fail because of the fundamental problem.

Section 10: Causal Inference



Causal Inference is Hard Classical Randomized Experiments Observational Data

Proposed Solutions

So here are some possible solutions

1 Randomized or Experimental Studies
2 Observational studies

Matching
Instrumental Variables
Regression Discontinuity Design
Difference-in-Differences
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Estimating ATE

We can estimate the ATE in the following way:

ˆATE = E [Yt(1)− Yc (0)]

= E [Yt(1)]− E [Yc(0)]

Both quantities are observed.

We basically find the average Y for observations that received
treatment and average Y for observations that received control.

But we have to make some assumptions

SUTVA

unconfoundedness/ignorability
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Stable Unit Treatment Value Assumption

The stable unit treatment value assumption (SUTVA)
assumes that

the treatment status of any unit does not affect the potential
outcomes of the other units (non-interference)

the treatments for all units are comparable (no variation in
treatment)

Violations:

Job training for too many people may flood the market with
qualified job applicants (interference)

Some patients get extra-strength aspirin (variation in
treatment)
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Ignorability/Unconfoundedness

Unconfoundedness (strong ignorability):

(Y (1),Y (0))⊥T

Treatment assignment is independent of the outcomes (Y ).

Ignorability and Unconfoundedness are often used interchangeably.
Technically, unconfoundedness is a stronger assumption. Most
people just say ignorability.

Violations:

Omitted Variable Bias
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Classical Randomized Experiment

The gold standard of scientific research.

The simplest way (conceptually) to compare treated and
control units.

Units are randomly assigned to receive treatment and control.

We still can’t estimate individual-level causal effects, but we
can estimate the population average treatment effect,
E [Yi (1)− Yi (0)].

Fisher’s Fundamental Principles of Experimentation:
Replication, Randomization, Blocking
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Classical Randomized Experiments

Note again our assumptions:
1 Ignorability. There are no factors out there that affect both

the probability of treatment and the outcome.

If the treatment was assigned in a truly random fashion, you
are generally ok.
But if it wasn’t, then you are in trouble!

2 SUTVA. We have assumed that assigning treatment to one
unit doesn’t affect the outcome for another unit.

Not always reasonable if there are potential peer effects!

.
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Classical Randomized Experiments

We also need to think about compliance issues.

Did the units “take” the treatment as they were supposed to?

Never-taker: Unit never takes treatment
Always-taker: Unit always takes treatment
Complier: Unit takes the treatment like they are supposed to
Defier: Unit takes treatment when not assigned and control
when assigned

Naive solution: Focus on “intent to treat” rather than on
actual treatment.

Another solution: Use an IV approach with the intent to treat
as an instrument.

Other issues as well like missing data (measurement error and
structural).
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Observational Data

We have a dataset where we only observe after the experiment
occurred and we have no control over treatment assignment.

This is the case with most of the sciences.

1 Gather dataset.

2 Estimate ATE or ATT with a model.

SUTVA: assumed (a problematic assumption most of the time)

Ignorability: include covariates to get conditional ignorability

(Y (1),Y (0))⊥T |X

Treatment assignment is independent of the outcomes (Y ) given
covariates X .
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Problems:

SUTVA assumption

Omitted variable bias

Don’t include all the variables that makes treatment
assignment independent of Y .

Model Dependence

We try to alleviate the curse of dimensionality and problem of
continuous covariates by specifying a model.
Estimates of ATE or ATT may differ depending on the model
you specify.
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Observational Studies

Here’s how people have thought about this problem:

What if we condition on every variable that might affect both
Ti and Yi ?

That way, it will appear for all intents and purposes that Ti

has been randomly assigned.

In plain English: We want to try to mimic a randomized
study. We do so by conditioning on all possible confounding
variables.

Note: We still have to satisfy SUTVA, the stable unit
treatment value assumption.

In all circumstances we will make (often unstated) assumptions to
help generate the inference. These assumptions are often
untestable by definition.
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A Quick Aside for Emphasis

What do we do 99% of the time in the literature

We run a regression and interpret every coefficient

What is the treatment? We can only interpret one coefficient
causally.

Post-Treatment Bias

SUTVA

We are usually estimating the conditional mean, not the causal
effect. Like I said, causal inference is hard!

Section 10: Causal Inference



Causal Inference is Hard Classical Randomized Experiments Observational DataMatching Instrumental Variables Regression Discontinuity Difference-in-Differences

Matching: A way to Ameliorate Model Dependence

If we had pairs of observations that had the exact same
covariate values (perfect balance) and differed only on
treatment assignment, then we would have perfect conditional
ignorability – i.e., conditional on the covariates, the treatment
is independent of the outcome.

Then we will get the same results regardless of the model.

Matching is a method of trying to achieve better balance on
covariates and reduce model dependence. Goal: Balance on
covariates

But remember: Don’t match on post-treatment variables!
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Synthetic Controls

Basic Idea: Assume that we can build matched-controls by
weighting observations.

Implemented in R and MATLAB in the Synth package

Work by Abadie, Diamond and Hainmueller

Key Paper: “The Economic Costs of Conflict: A Case Study
of the Basque Country”

However: You essentially have an n of 1.
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Synthetic Controls (Basque Country)

Figure: An Example from Abadie & Gareazabal (2003)
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Synthetic Controls (California)

Figure: An Example from Abadie, Diamond and Hainmueller (2010)
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Instrumental Variables

Goal: Estimate Causal Effects

Problem in Observational Data: Non-ignorability of treatment
assignment (and SUTVA)

Solution so far: Include covariates and match

Another solution: Instrumental Variables

The idea: Find an instrument Z that is randomly assigned (or
assignment is ignorable) and that affects Y only through T .

Example: Y = post-Vietnam War civilian mortality; T = serving
in the military during Vietnam War; Z = draft lottery

Section 10: Causal Inference



Causal Inference is Hard Classical Randomized Experiments Observational DataMatching Instrumental Variables Regression Discontinuity Difference-in-Differences

The Potential Outcomes Approach

Assumptions:

1 SUTVA: Zi does not affect Tj and Yj and Ti does not affect
Yj for all i 6= j (non-interference) and there is no variation in
the treatment or the instrument.

Figure: SUTVA Assumption implies absence of dotted arrows.

Zi
//

�� !!

Ti
//

��

Yi

Zj
// Tj

// Yj

Example: The veteran status of any man at risk of being drafted in the lottery was not affected by the

draft status of others at risk of being drafted, and, similarly, that the civilian mortality of any such man

was not affected by the draft status of others. Section 10: Causal Inference
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2. Random (Ignorable) Assignment of the Instrument Z
Example: Assignment of draft status was random.

3. Exclusion Restriction: Any effect of Z on Y must be via an
effect of Z on T .

Figure: Exclusion assumption implies absence of dotted arrow.

Zi
//

;;Ti
// Yi

Example: Civilian mortality risk was not affected by draft status once veteran status is taken into account.

4. Nonzero Average Causal Effect of Z on T .
Example: Having a low lottery number increases the average probability of service.

5. Monotonicity: No Defiers
Example: There is no one who would have served if given a high lottery number, but not if given a low

lottery number.
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Local Average Treatment Effect Among Compliers

Never-Takers

Ti (1)− Ti (0) = 0

Yi (1, 0)− Yi (0, 0) = 0

By Exclusion Restriction, causal
effect of Z on Y is zero

Defier

Ti (1)− Ti (0) = −1

Yi (1, 0)−Yi (0, 1) = Yi (0)−Yi (1)

By Monotonicity, no one in this
group

Complier

Ti (1)− Ti (0) = 1

Yi (1, 0)−Yi (0, 1) = Yi (1)−Yi (0)

Average Treatment Effect among
Compliers

Always-taker

Ti (1)− Ti (0) = 0

Yi (1, 1)− Yi (0, 1) = 0

By Exclusion Restriction, causal
effect of Z on Y is zero
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If all the assumptions hold, then the Local Average Treatment
Effect (LATE) of T on Y is

LATE =
Effect of Z on Y

Effect of Z on T

It is only a local average treatment effect because it’s the effect of
T on Y for the subpopulation of compliers, and not the whole
population.

A Word of Caution: Be wary of people who use the same
instrument for everything!
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Regression Discontinuity Design

Sometimes called “natural experiments.” Here’s how it works:

There is some pre-treatment variable x with a cutoff value –
below the cut-off value the unit receives treatment and above
the cutoff it receives control.

The cutoff should be arbitrary and not related to the other
covariates.

There should be no real reason to think that the units below
the cut-off are substantively that different from the units
above the cut-off.

We basically take care of ignorability. (Note: you still have to
worry about SUTVA.)

Section 10: Causal Inference



Causal Inference is Hard Classical Randomized Experiments Observational DataMatching Instrumental Variables Regression Discontinuity Difference-in-Differences

Regression Discontinuity

Here are some examples:

Criminals who are 17 yrs old, 364 days are treated as
juveniles, but those who are 18yrs old, 1 day are treated as
adults. What is the effect of adult sentencing?

European municipalities with populations of 3499 do not need
to have dissenting party members sit on their councils, but
those with populations of 3500 do. What is the effect of
having dissenting party members on council decisions?

HS standardized test takers who get a score of 90.5 get a
small scholarship, but those that get 89.5 don’t. What is the
effect of the scholarship on college success?

It’s sometimes easier to see this visually.
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Regression Discontinuity (Eggers)

Example: In some French cities, the rightist party wins with 50.5 of the vote%; in

other cities, they lose with 49.5% of the vote. What is the effect of rightist

governments on tax policies?
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Regression Discontinuity

Some thoughts about RDD designs:

Always pay attention to the bandwidth size...

If you are working on elections: “Are Close Elections
Random?” Grimmer, Hersh, Feinstein, Carpenter (2011)

Remember who you are generalizing to!
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Difference-in-Differences

The Idea: We can use two units observed at two time points.

Imagine two sets of units (treated and control, T = 1, 0) each
observed at two time points (D = 1, 2)

There is some intervention on the treated units between the
two time points but not the controls

Take First Differences and Compare

(E [Y (D = 2)|T = 1]− E [Y (D = 2)|T = 0])− (E [Y (D = 1)|T = 1]− E [Y (D = 1)|T = 0])

Similarity is critical! E.g. Card and Krueger on the minimum wage
(1994)
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Conclusions

There are a lot of causal inference techniques out there.

Remember to ask yourself: where is the leverage coming from?
Is it from a unique feature of the data? Or a heroic
assumption?

Causal Inference is hard: but it is worth doing!

What we haven’t covered: DAGs, SEMs, Selection Models etc.
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