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A Running Example

Suppose we observe the following data from a dichotomous
random variable Y : {1, 0, 0, 1, 1}.

Let’s assume that Y is distributed Bernoulli with some constant
probability of seeing a one across observations. We might also
assume that observations are independent.

The model:

1. Yi ∼ fbern(yi |πi ).

2. πi = π.

3. Yi and Yj are independent for all i 6= j .
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1. What’s the PMF for a Bernoulli again?

Yi =

{
1 with probability π
0 with probability 1− π

2. So what’s the joint distribution for our data conditional on π?

Pr(y|π) = Pr(Y1 = 1,Y2 = 0, ...,Y5 = 1|π)

= Pr(Y1 = 1|π)Pr(Y2 = 0|π)...Pr(Y5 = 1|π)

= π · (1− π) · (1− π) · π · π
= π3(1− π)2
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3. Recalling that L(θ|y) ∝ p(y|θ), let’s find our likelihood function.

L(π|y) ∝ π3(1− π)2.

4. Let’s take the natural logarithm, which is a relatively
unimportant step now but will be essential for computational
reasons later on.

ln
[
π3(1− π)2

]
= ln(π3) + ln((1− π)2)

= 3 lnπ + 2 ln(1− π).
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Where is the maximum, and how could we find it analytically using

lnL(π|y) = 3 lnπ + 2 ln(1− π)?
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5. Let’s find the 1st derivative of lnL(π|y), which is a function
which tells us the slope of a line tangent to our function at any
point. We want to know at which value of π the slope of the
tangent line is zero.

∂ lnL(π|y)

∂π
=

∂

∂π
[3 lnπ + 2 ln(1− π)]

=
3

π
+

2

1− π
· (−1)

Note: this can also be done in R using deriv():

> deriv(f(x) ~ 3*log(x) + 2*log(1-x), "x")

expression({

.expr3 <- 1 - x

...

.grad[, "x"] <- 3 * (1/x) - 2 * (1/.expr3)

...
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5. Let’s find the 1st derivative of lnL(π|y), which is a function
which tells us the slope of a line tangent to our function at any
point. We want to know at which value of π the slope of the
tangent line is zero.

∂ lnL(π|y)

∂π
=

∂

∂π
[3 lnπ + 2 ln(1− π)]

=
3

π
+

2

1− π
· (−1)

When this function is equal to zero, π = 3
5 . Q: Assuming we

hadn’t seen
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how would we know if π = 3
5 was a maximum or a minimum?
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6. Check the ‘critical value’ (proposed maximum or minimum) by
examining whether the slope of the function is decreasing or
increasing at the critical value.
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∂2 lnL(π|y)

∂π2
=

∂

∂π
[
3

π
+

2

1− π
· (−1)]

= − 3

π2
− 2

(1− π)2

= − 3

.62
− 2

(1− .6)2

= −20.83.

This is definitely negative.
Section 3: Optimization



Finding the Maximum of a Likelihood
Optimizating Univariate Functions
Optimizing Multivariate Functions

A Full Example

Analytic Optimization
Numerical Optimization

Outline

1 Finding the Maximum of a Likelihood

2 Optimizating Univariate Functions
Analytic Optimization
Numerical Optimization

3 Optimizing Multivariate Functions

4 A Full Example

Section 3: Optimization



Finding the Maximum of a Likelihood
Optimizating Univariate Functions
Optimizing Multivariate Functions

A Full Example

Analytic Optimization
Numerical Optimization

Outline

1 Finding the Maximum of a Likelihood

2 Optimizating Univariate Functions
Analytic Optimization
Numerical Optimization

3 Optimizing Multivariate Functions

4 A Full Example

Section 3: Optimization



Optimization

The previous example we just developed is an example of
optimization: the process of minimizing or maximizing a function
by systematically choosing the values of variables from within an
allowed set. For example:

min
x∈[−∞,∞]

f (x) = −1

2
(3− x)2

- f (x) is called the objective function

- x is the parameter (for us, β, π, σ, etc.)

- x ∈ [−∞,∞] is the allowed set or the parameter space

Two ways to solve:

1. analytically (we just did this using derivatives)

2. numerically (we’ll do this in a minute)



Finding the Maximum of a Likelihood
Optimizating Univariate Functions
Optimizing Multivariate Functions

A Full Example

Analytic Optimization
Numerical Optimization

Outline

1 Finding the Maximum of a Likelihood

2 Optimizating Univariate Functions
Analytic Optimization
Numerical Optimization

3 Optimizing Multivariate Functions

4 A Full Example

Section 3: Optimization



Analytical Optimization: Univariate case

Step One: Take the first derivative of the function and identify the
critical value(s).

The derivative of a function at a value x0, denoted by f ′(x0)
or ∂f

∂x (x0), is the instantaneous rate of change in f (·) at x0.

It partially describes the behavior of a function on an interval
[a,b]

- If f
′
(x) > 0 for all x ∈ [a, b], then f is increasing on the

interval [a, b]
- If f

′
(x) < 0 for all x ∈ [a, b], then f is decreasing on the

interval [a, b]
- If f

′
(x) = 0 at some x ∈ [a, b] then we say x is a critical value

of f . Critical values may be maxima, minima, or saddle points.



Analytical Optimization: Univariate case

Step Two: Compute the second derivative of the function at the
critical value(s) and evaluate.

The second derivative of a function f
′′

(x) or ∂2f
∂x∂x (x) is the

derivative of the derivative, or the rate of change of the rate
of change.

Use the following to evaluate your critical value(s):

- If f ′(x0) = 0, and f
′′

(x0) < 0, then x0 is a maximum
- If f ′(x0) = 0 and f

′′
(x0) > 0, then x0 is a minimum

- If f ′(x0) = 0 and f
′′

(x0) = 0, then x0 may be a minimum, a
maximum, or neither.



Analytical Optimization: Univariate case

For example:

Find extreme value of: f (x) = x3 − 3x2

f ′(x) = 3x2 − 6x = 3x(x − 2) so f ′(x) = 0 for x = 0 and
x = 2.

Critical values are:

- P1 = (0, f (0)) = (0, 0)
- P2 = (2, f (2)) = (2,−4)

Second derivative test: f ′′(x) = 6x − 6 = 6(x − 1)

Evaluate second derivative at critical values:

- f ′′(2) = 6 so P1 will be a minimum
- f ′′(0) = −6 so P2 will be a maximum
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Numerical Optimization

For problems of only slightly more complexity, using derivatives
and solving for parameters in order to maximize may be not only
impractical but impossible.

There are a number of functions in R which can be used to
optimize functions, but the one we will use most heavily is
optim().
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Numerical Optimization Example

optim() takes a starting value (par) and a function (fn) as its
main arguments.

ll <- function(pie) return(3*log(pie) + 2*log(1-pie))

optim(par = .3, fn = ll, control = list(fnscale = -1),

method = "BFGS", hessian = TRUE)

What are these three extra arguments?

1. fnscale multiplies the function by the given constant. As a
default optim() finds the minimum so multiplying our
function by −1 fools optim() into finding the maximum.

2. method is the variety of algorithm used to find the maximum.
More on this in a second.

3. hessian = TRUE requests that optim return a matrix of
second derivatives which in the above case will be 1x1.
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Numerical Optimization Example Cont.

$par

[1] 0.6000034

$value

[1] -3.365058

...

$hessian

[,1]

[1,] -20.83365

$Warning messages:

1: In log(1 - x) : NaNs produced

2: In log(1 - x) : NaNs produced
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What is optim doing?

It depends on your choice in the method argument.

Nelder-Mead: this is the default; it is slow but somewhat
robust to non-differentiable functions.

BFGS: a quasi-Newton Method; it is fast but needs a well
behaved objective function.

L-BFGS-B: similar to BFGS but allows box-constraints (i.e.
upper and lower bounds on variables).

CG: conjugate gradient method, may work for really large
problems (we won’t really use this).

SANN: uses simulated annealing – a stochastic global
optimization method; it is very robust but very slow.
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Newton’s Method

Newton’s method: a pretty good approach for a continuous and
twice-differentiable function. We’ll look at a univariate function
here.

Suppose we know our function f (·) and we have a starting value of
x0. Our goal is to find move from x0 to x1 such that f ′(x1) = 0 (or
is at least closer to 0 then than at x0).

This will be a sequential process of approximation and eventually
f ′(xn) will be close enough to zero to let us declare that xn a
critical value.
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Newton’s Method

Recall Taylor’s Theorem:

g(x1) ≈ g(x0)+g ′(x0)(x1−x0)+
g ′′(x0)

2!
(x1−x0)2+...+

gk(x0)

k!
(x1−x0)k .

Section 3: Optimization



Finding the Maximum of a Likelihood
Optimizating Univariate Functions
Optimizing Multivariate Functions

A Full Example

Analytic Optimization
Numerical Optimization

−2 −1 0 1 2

0
2

4
6

Taylor Expansion

X

Y

Figure: The exponential function, g(x) = ex , and the Taylor Series
approximation: x0 = 0, g0(x1) = 1 (from Wikipedia)
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Figure: The exponential function, g(x) = ex , and the Taylor Series
approximation: x0 = 0, g1(x1) = 1 + x1 (from Wikipedia)
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Figure: The exponential function, g(x) = ex , and the Taylor Series

approximation: x0 = 0, g2(x1) = 1 + x1 + x2

2 (from Wikipedia)
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Figure: The exponential function, g(x) = ex , and the Taylor Series

approximation: x0 = 0, g3(x1) = 1 + x1 + x2

2 + x3

6 (from Wikipedia)
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Figure: The exponential function, g(x) = ex , and the Taylor Series

approximation: x0 = 0, g4(x1) = 1 + x1 + x2

2 + x3

6 + x4

24 (from Wikipedia)
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Newton’s Method

Recall Taylor’s Theorem:

g(x1) ≈ g(x0)+g ′(x0)(x1−x0)+
g ′′(x0)

2!
(x1−x0)2+...+

gk(x0)

k!
(x1−x0)k .

We want to find x1 such that f ′(x1) = 0 so our g(·) is f ′(·). Let’s
really approximate: f ′(x1) = f ′(x0) + f ′′(x0)(x1 − x0).

Setting this to zero we get an updating formula to make f ′(x1)
approximately zero:

x1 = x0 −
f ′(x0)

f ′′(x0)

or for the nth iteration of our procedure

xn+1 = xn −
f ′(xn)

f ′′(xn)
.

Section 3: Optimization



Finding the Maximum of a Likelihood
Optimizating Univariate Functions
Optimizing Multivariate Functions

A Full Example

Analytic Optimization
Numerical Optimization

Newton in Action

Let’s maximize our likelihood: 3 lnπ + 2 ln(1− π).

Recall that L′(π) = 3
π −

2
1−π and L′′(π) = − 3

π2 − 2
(1−π)2 .

Starting at π0 = .3, we use our updating formula:

π1 = π0 −
L′(π0)

L′′(π0)
= .3− L′(.3)

L′′(.3)
= 0.4909.

Now use π1 = .4909 as a starting value.

π2 = π1 −
L′(π1)

L′′(π1)
= .4909− L′(.4909)

L′′(.4909)
= 0.5991.

So we’re already there!
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Properties of Newton-Raphson

Converges quickly

Can get stuck in local minima/maxima

Can have troubles with root jumping

Won’t walk at all on a flat space
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The Multivariate Normal

Suppose I give you two observations (x=2, y=4) and tell you that
they are from a bivariate normal distribution. It’s known that
σx = σy = 1 and x and y are uncorrelated. The two unknown
parameters are µx and µy . The pdf is:

f (x , y |µx , µy ) =
1

2π
e−

1
2

[
(x−µx )2+(y−µy )2

]
.

So what’s the likelihood?

L(µx , µy |x , y) ∝ 1

2π
e−

1
2

[
(x−µx )2+(y−µy )2

]
.

And the log-likelihood is especially nice:

ln L(µx , µy |x , y) ∝ ln
1

2π
− 1

2

[
(x − µx)2 + (y − µy )2

]
.

= −1

2

[
(x − µx)2 + (y − µy )2

]
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Visualizing the Likelihood

We can plug in the datum and plot the likelihood:

mu_xmu_y

log−like
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Multivariable Case: Analytically

Find extrema of:

l(µx , µy |x , y) ∝ −1

2

[
(x − µx)2 + (y − µy )2

]
= −1

2

[
(2− µx)2 + (4− µy )2

]
= −10 + 2µx −

µ2x
2

+ 4µy −
µ2y
2
.

Step One: Find critical value(s) using the the partial derivatives of
f (x , y) with respect to x and y .

- ∂l
∂µx

= 2− µx is 0 if µx = 2.

- ∂l
∂µy

= 4− µy is 0 if µy = 4.

- So we have a critical value at (µx = 2, µy = 4).
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Multivariable Case: Analytically

Step Two: Evaluate critical value using the second derivative, but
we have a wrinkle here because we have two variables. We’re going
to end up with a 2x2 Hessian matrix.

H =

(
∂2l

∂µx∂µx
(2, 4) = −1 ∂2l

∂µx∂µy
(2, 4) = 0

∂2l
∂µy∂µx

(2, 4) = 0 ∂2l
∂µy∂µy

(2, 4) = −1

)

It turns out that the key issue here for determining whether we
have a maximum settles on whether the Hessian matrix is negative
or positive definite (or something else). Define a =

(a1
a2

)
.

1. negative definite: a′Ha < 0 for all a 6= 0 → maximum.
2. positive definite: a′Ha > 0 for all a 6= 0 → minimum.

Our example is easy: a′Ha = (−a1 − a2)
(a1
a2

)
= −a21 − a22. So

we’re negative definite.
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Multivariate Case: Numerically

l(µx , µy |x , y) = −1

2

[
(2− µx)2 + (4− µy )2

]
ll <- function(par){

mux <- par[1]

muy <- par[2]

like <- -.5*((2-mux)^2+(4-muy)^2)

return(like)

}

optim(par = c(0,0), fn = ll, method = "BFGS",

control = list(fnscale = -1), hessian = TRUE)
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$par

[1] 2 4

$value

[1] -4.930381e-31

...

$convergence

[1] 0

...

$hessian

[,1] [,2]

[1,] -1.000000e+00 -2.646978e-17

[2,] -2.646978e-17 -1.000000e+00
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optim() Techniques in Practice

You can always test these techniques on some function.

fkt <- function(x){10*sin(0.3*x)*sin(1.3*x^2)

+ 0.00001*x^4 + 0.2*x+80}
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Figure: Plotting the Wild Function
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Figure: Using BFGS at x=50
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out <- optim(par = 50, fkt, method="BFGS",

control=list(maxit=20000, parscale=20))

points(out$par, out$val, pch = 8, col="blue", cex=2)
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Figure: Using Simulated Annealing at x=50
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out <- optim(par = 50, fkt, method="SANN",

control=list(maxit=20000, temp=20, parscale=20))

points(out$par, out$val, pch = 8, col = "red", cex = 2)
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Putting It All Together

Suppose we have some count data (number of coups in a year).

We can use a Poisson distribution to model the data (we will learn
more about Poisson later).

Yi ∼iid Poisson(λ)

We want to find λ, which is the mean of the Poisson distribution.

The PMF (discrete) for the data is

p(y|λ) =
n∏

i=1

λyi e−λ

yi !

Section 3: Optimization



Finding the Maximum of a Likelihood
Optimizating Univariate Functions
Optimizing Multivariate Functions

A Full Example

Since L(θ|y) = p(y |θ), we have

L(λ|y) =
n∏

i=1

λyi e−λ

yi !

To make the math easier, we will take the log-likelihood.

l(λ|y) =
n∑

i=1

(yi lnλ− λ− ln yi !)

We can drop all terms that don’t depend on λ (because likelihood
is a relative concept and is invariant to shifts).

l(λ|y) =
n∑

i=1

(yi lnλ)− nλ
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Why Can We Use the Log-likelihood?
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Finding the Maximum Likelihood Estimate (MLE)

Remember that to find our MLE, we want to find the value of the
parameter(s) that maximizes our log-likelihood.

l(λ|y) =
n∑

i=1

(yi lnλ)− nλ

We need to set the derivative (known as the score function) to
zero and solve for λ.

∂l(λ|y)

∂λ
= S(θ) =

∑n
i=1 yi
λ

− n

0 =

∑n
i=1 yi
λ

− n

λ̂ =

∑n
i=1 yi
n
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Maximum Likelihood In R

Write our log-likelihood function:

l(λ|y) =
n∑

i=1

(yi lnλ)− nλ

> ll.poisson <- function(par, y) {

+ lambda <- exp(par)

+ out <- sum(y * log(lambda)) - length(y) * lambda

+ return(out)

+ }

Find the maximum (with sample data)
> data <- rpois(1000, 5)

> opt <- optim(par = 2, fn = ll.poisson, method = "BFGS", control = list(fnscale = -1),

+ y = data)$par

> mle <- exp(opt)

> mle

[1] 4.996001
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