Section 3: Optimization

February 9, 2012

Section 3: Optimization

<ロ> <部> < 部> < き> < き> <</p>

э

Outline

- Optimizating Univariate Functions
 Analytic Optimization
 - Numerical Optimization

Optimizing Multivariate Functions

4 A Full Example

- 4 同 6 4 日 6 4 日 6

Finding the Maximum of a Likelihood

Optimizating Univariate Functions Optimizing Multivariate Functions A Full Example

Outline

1 Finding the Maximum of a Likelihood

Optimizating Univariate Functions Analytic Optimization Numerical Optimization

Optimizing Multivariate Functions

4 Full Example

▲□ ► < □ ► </p>

A Running Example

Suppose we observe the following data from a dichotomous random variable Y: $\{1, 0, 0, 1, 1\}$.

Let's assume that Y is distributed Bernoulli with some constant probability of seeing a one across observations. We might also assume that observations are independent.

The model:

- 1. $Y_i \sim f_{\text{bern}}(y_i|\pi_i)$.
- 2. $\pi_i = \pi$.
- 3. Y_i and Y_j are independent for all $i \neq j$.

A Running Example

1. What's the PMF for a Bernoulli again?

$$Y_i = \begin{cases} 1 & \text{with probability } \pi \\ 0 & \text{with probability } 1 - \pi \end{cases}$$

2. So what's the joint distribution for our data conditional on π ?

$$Pr(\mathbf{y}|\pi) = Pr(Y_1 = 1, Y_2 = 0, ..., Y_5 = 1|\pi)$$

= $Pr(Y_1 = 1|\pi)Pr(Y_2 = 0|\pi)...Pr(Y_5 = 1|\pi)$
= $\pi \cdot (1 - \pi) \cdot (1 - \pi) \cdot \pi \cdot \pi$
= $\pi^3 (1 - \pi)^2$

3. Recalling that $L(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)$, let's find our likelihood function.

$$L(\pi|\mathbf{y}) \propto \pi^3(1-\pi)^2.$$

4. Let's take the natural logarithm, which is a relatively unimportant step now but will be essential for computational reasons later on.

$$\ln \left[\pi^3 (1-\pi)^2 \right] = \ln(\pi^3) + \ln((1-\pi)^2)$$

= $3 \ln \pi + 2 \ln(1-\pi).$

Finding the Maximum of a Likelihood

Optimizating Univariate Functions Optimizing Multivariate Functions A Full Example

Where is the maximum, and how could we find it analytically using

$$\ln L(\pi | \mathbf{y}) = 3 \ln \pi + 2 \ln(1 - \pi)?$$

Section 3: Optimization

< ロ > < 同 > < 回 > < 回 >

5. Let's find the 1st derivative of $\ln L(\pi | \mathbf{y})$, which is a function which tells us the slope of a line tangent to our function at any point. We want to know at which value of π the slope of the tangent line is zero.

$$\frac{\partial \ln \mathcal{L}(\pi | \mathbf{y})}{\partial \pi} = \frac{\partial}{\partial \pi} [3 \ln \pi + 2 \ln(1 - \pi)]$$
$$= \frac{3}{\pi} + \frac{2}{1 - \pi} \cdot (-1)$$

<u>Note</u>: this can also be done in R using deriv():

> deriv(f(x) ~ 3*log(x) + 2*log(1-x), "x")
expression({

. . .

... .grad[, "x"] <- 3 * (1/x) - 2 * (1/.expr3)

5. Let's find the 1st derivative of $\ln L(\pi | \mathbf{y})$, which is a function which tells us the slope of a line tangent to our function at any point. We want to know at which value of π the slope of the tangent line is zero.

$$\frac{\partial \ln \mathcal{L}(\pi | \mathbf{y})}{\partial \pi} = \frac{\partial}{\partial \pi} [3 \ln \pi + 2 \ln(1 - \pi)]$$
$$= \frac{3}{\pi} + \frac{2}{1 - \pi} \cdot (-1)$$

When this function is equal to zero, $\pi = \frac{3}{5}$. Q: Assuming we hadn't seen

how would we know if $\pi = \frac{3}{5}$ was a maximum or a minimum?

Section 3: Optimization

6. Check the 'critical value' (proposed maximum or minimum) by examining whether the slope of the function is decreasing or increasing at the critical value.

$$\frac{\partial^2 \ln L(\pi | \mathbf{y})}{\partial \pi^2} = \frac{\partial}{\partial \pi} \left[\frac{3}{\pi} + \frac{2}{1 - \pi} \cdot (-1) \right]$$

= $-\frac{3}{\pi^2} - \frac{2}{(1 - \pi)^2}$
= $-\frac{3}{.6^2} - \frac{2}{(1 - .6)^2}$
= $-20.83.$

Section 3: Optimization

Analytic Optimization Numerical Optimization

Outline

1 Finding the Maximum of a Likelihood

- 2 Optimizating Univariate Functions
 - Analytic Optimization
 - Numerical Optimization

Optimizing Multivariate Functions

A Full Example

・ 戸 ・ ・ ヨ ・ ・

34.16

Analytic Optimization Numerical Optimization

Outline

Optimizating Univariate Functions
 Analytic Optimization
 Numerical Optimization

Optimizing Multivariate Functions

4 Full Example

Image: A image: A

Optimization

The previous example we just developed is an example of **optimization**: the process of minimizing or maximizing a function by systematically choosing the values of variables from within an allowed set. For example:

$$\min_{x\in[-\infty,\infty]}f(x)=-\frac{1}{2}(3-x)^2$$

- f(x) is called the objective function
- x is the parameter (for us, β , π , σ , etc.)
- $x\in [-\infty,\infty]$ is the allowed set or the parameter space

Two ways to solve:

- 1. analytically (we just did this using derivatives)
- 2. numerically (we'll do this in a minute)

Analytic Optimization Numerical Optimization

Outline

Optimizating Univariate Functions
 Analytic Optimization
 Numerical Optimization

Optimizing Multivariate Functions

4 Full Example

Image: A image: A

Analytical Optimization: Univariate case

<u>Step One</u>: Take the first derivative of the function and identify the critical value(s).

- The derivative of a function at a value x_0 , denoted by $f'(x_0)$ or $\frac{\partial f}{\partial x}(x_0)$, is the instantaneous rate of change in $f(\cdot)$ at x_0 .
- It partially describes the behavior of a function on an interval [a,b]
 - If f'(x) > 0 for all $x \in [a, b]$, then f is increasing on the interval [a, b]
 - If f'(x) < 0 for all $x \in [a, b]$, then f is decreasing on the interval [a, b]
 - If f'(x) = 0 at some $x \in [a, b]$ then we say x is a critical value of f. Critical values may be maxima, minima, or saddle points.

<u>Step Two</u>: Compute the second derivative of the function at the critical value(s) and evaluate.

- The second derivative of a function f["](x) or ∂²f/∂x∂x(x) is the derivative of the derivative, or the rate of change of the rate of change.
- Use the following to evaluate your critical value(s):
 - If $f'(x_0) = 0$, and $f''_{''}(x_0) < 0$, then x_0 is a maximum
 - If $f'(x_0) = 0$ and $f''(x_0) > 0$, then x_0 is a minimum
 - If $f'(x_0) = 0$ and $f''(x_0) = 0$, then x_0 may be a minimum, a maximum, or neither.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Analytical Optimization: Univariate case

For example:

• Find extreme value of: $f(x) = x^3 - 3x^2$

•
$$f'(x) = 3x^2 - 6x = 3x(x - 2)$$
 so $f'(x) = 0$ for $x = 0$ and $x = 2$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Critical values are:

-
$$P_1 = (0, f(0)) = (0, 0)$$

- $P_2 = (2, f(2)) = (2, -4)$

- Second derivative test: f''(x) = 6x 6 = 6(x 1)
- Evaluate second derivative at critical values:
 - f''(2) = 6 so P_1 will be a minimum
 - f''(0) = -6 so P_2 will be a maximum

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○

Analytic Optimization Numerical Optimization

Outline

- Optimizating Univariate Functions
 Analytic Optimization
 - Numerical Optimization

Optimizing Multivariate Functions

4 Full Example

Section 3: Optimization

▲□ ► < □ ► </p>

Analytic Optimization Numerical Optimization

Numerical Optimization

For problems of only slightly more complexity, using derivatives and solving for parameters in order to maximize may be not only impractical but impossible.

There are a number of functions in R which can be used to optimize functions, but the one we will use most heavily is optim().

イロト イポト イラト イラト

Numerical Optimization Example

optim() takes a starting value (par) and a function (fn) as its main arguments.

ll <- function(pie) return(3*log(pie) + 2*log(1-pie))</pre>

optim(par = .3, fn = ll, control = list(fnscale = -1), method = "BFGS", hessian = TRUE)

What are these three extra arguments?

- fnscale multiplies the function by the given constant. As a default optim() finds the minimum so multiplying our function by -1 fools optim() into finding the maximum.
- method is the variety of algorithm used to find the maximum. More on this in a second.
- 3. hessian = TRUE requests that optim return a matrix of second derivatives which in the above case will be 1x1.

Analytic Optimization Numerical Optimization

Numerical Optimization Example Cont.

```
$par
[1] 0.6000034
$value
[1] -3.365058
. . .
$hessian
           [,1]
[1,] -20.83365
$Warning messages:
1: In log(1 - x) : NaNs produced
2: In log(1 - x) : NaNs produced
```

Analytic Optimization Numerical Optimization

What is optim doing?

It depends on your choice in the method argument.

- Nelder-Mead: this is the default; it is slow but somewhat robust to non-differentiable functions.
- BFGS: a quasi-Newton Method; it is fast but needs a well behaved objective function.
- L-BFGS-B: similar to BFGS but allows box-constraints (i.e. upper and lower bounds on variables).
- CG: conjugate gradient method, may work for really large problems (we won't really use this).
- SANN: uses simulated annealing a stochastic global optimization method; it is very robust but very slow.

・ロト ・同ト ・ヨト ・ヨト

Analytic Optimization Numerical Optimization

Newton's Method

Newton's method: a pretty good approach for a continuous and twice-differentiable function. We'll look at a univariate function here.

Suppose we know our function $f(\cdot)$ and we have a starting value of x_0 . Our goal is to find move from x_0 to x_1 such that $f'(x_1) = 0$ (or is at least closer to 0 then than at x_0).

This will be a sequential process of approximation and eventually $f'(x_n)$ will be close enough to zero to let us declare that x_n a critical value.

Analytic Optimization Numerical Optimization

Newton's Method

Recall Taylor's Theorem:

$$g(x_1) \approx g(x_0) + g'(x_0)(x_1 - x_0) + \frac{g''(x_0)}{2!}(x_1 - x_0)^2 + \dots + \frac{g^k(x_0)}{k!}(x_1 - x_0)^k.$$

Section 3: Optimization

*ロト *部ト *注ト *注ト

э

≻

Analytic Optimization Numerical Optimization

Taylor Expansion

Figure: The exponential function, $g(x) = e^x$, and the Taylor Series approximation: $x_0 = 0$, $g_0(x_1) = 1$ (from Wikipedia)

- 4 同 6 4 日 6 4 日 6

≻

Analytic Optimization Numerical Optimization

Taylor Expansion

Figure: The exponential function, $g(x) = e^x$, and the Taylor Series approximation: $x_0 = 0$, $g_1(x_1) = 1 + x_1$ (from Wikipedia)

< ロ > < 同 > < 回 > < 回 >

Analytic Optimization Numerical Optimization

х

Taylor Expansion

Figure: The exponential function, $g(x) = e^x$, and the Taylor Series approximation: $x_0 = 0$, $g_2(x_1) = 1 + x_1 + \frac{x^2}{2}$ (from Wikipedia)

(日)

Analytic Optimization Numerical Optimization

Taylor Expansion

Figure: The exponential function, $g(x) = e^x$, and the Taylor Series approximation: $x_0 = 0$, $g_3(x_1) = 1 + x_1 + \frac{x^2}{2} + \frac{x^3}{6}$ (from Wikipedia)

< ロ > < 同 > < 回 > < 回 >

Analytic Optimization Numerical Optimization

Taylor Expansion

Figure: The exponential function, $g(x) = e^x$, and the Taylor Series approximation: $x_0 = 0$, $g_4(x_1) = 1 + x_1 + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$ (from Wikipedia)

Image: A image: A

Analytic Optimization Numerical Optimization

Newton's Method

Recall Taylor's Theorem:

$$g(x_1) \approx g(x_0) + g'(x_0)(x_1 - x_0) + \frac{g''(x_0)}{2!}(x_1 - x_0)^2 + \ldots + \frac{g^k(x_0)}{k!}(x_1 - x_0)^k.$$

We want to find x_1 such that $f'(x_1) = 0$ so our $g(\cdot)$ is $f'(\cdot)$. Let's really approximate: $f'(x_1) = f'(x_0) + f''(x_0)(x_1 - x_0)$.

Setting this to zero we get an updating formula to make $f'(x_1)$ approximately zero:

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

or for the nth iteration of our procedure

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}.$$

Section 3: Optimization

< ロ > < 同 > < 回 > < 回 > .

Analytic Optimization Numerical Optimization

Newton in Action

Let's maximize our likelihood: $3 \ln \pi + 2 \ln(1 - \pi)$.

Recall that
$$L'(\pi)=rac{3}{\pi}-rac{2}{1-\pi}$$
 and $L''(\pi)=-rac{3}{\pi^2}-rac{2}{(1-\pi)^2}$.

Starting at $\pi_0 = .3$, we use our updating formula:

$$\pi_1 = \pi_0 - \frac{L'(\pi_0)}{L''(\pi_0)} = .3 - \frac{L'(.3)}{L''(.3)} = 0.4909.$$

Now use $\pi_1 = .4909$ as a starting value.

$$\pi_2 = \pi_1 - \frac{L'(\pi_1)}{L''(\pi_1)} = .4909 - \frac{L'(.4909)}{L''(.4909)} = 0.5991.$$

So we're already there!

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Analytic Optimization Numerical Optimization

Properties of Newton-Raphson

- Converges quickly
- Can get stuck in local minima/maxima
- Can have troubles with root jumping
- Won't walk at all on a flat space

- 4 同 6 4 日 6 4 日 6

Outline

2 Optimizating Univariate Functions
 • Analytic Optimization
 • Numerical Optimization

Optimizing Multivariate Functions

A Full Example

▲□ ► < □ ► </p>

The Multivariate Normal

Suppose I give you two observations (x=2, y=4) and tell you that they are from a bivariate normal distribution. It's known that $\sigma_x = \sigma_y = 1$ and x and y are uncorrelated. The two unknown parameters are μ_x and μ_y . The pdf is:

$$f(x, y | \mu_x, \mu_y) = \frac{1}{2\pi} e^{-\frac{1}{2} \left[(x - \mu_x)^2 + (y - \mu_y)^2 \right]}.$$

So what's the likelihood?

$$L(\mu_x, \mu_y | x, y) \propto rac{1}{2\pi} \mathrm{e}^{-rac{1}{2} \left[(x - \mu_x)^2 + (y - \mu_y)^2
ight]}.$$

And the log-likelihood is especially nice:

$$\ln \mathcal{L}(\mu_x, \mu_y | x, y) \propto \ln \frac{1}{2\pi} - \frac{1}{2} [(x - \mu_x)^2 + (y - \mu_y)^2]$$

$$= -\frac{1}{2} [(x - \mu_x)^2 + (y - \mu_y)^2]$$

Section 3: Optimization

Visualizing the Likelihood

We can plug in the datum and plot the likelihood:

Section 3: Optimization

Multivariable Case: Analytically

Find extrema of:

$$\begin{split} I(\mu_x, \mu_y | x, y) &\propto -\frac{1}{2} \big[(x - \mu_x)^2 + (y - \mu_y)^2 \big] \\ &= -\frac{1}{2} \big[(2 - \mu_x)^2 + (4 - \mu_y)^2 \big] \\ &= -10 + 2\mu_x - \frac{\mu_x^2}{2} + 4\mu_y - \frac{\mu_y^2}{2} \end{split}$$

Step One: Find critical value(s) using the the partial derivatives of $\overline{f(x, y)}$ with respect to x and y.

$$-\frac{\partial l}{\partial \mu_x} = 2 - \mu_x \text{ is 0 if } \mu_x = 2.$$

$$-\frac{\partial l}{\partial \mu_y} = 4 - \mu_y \text{ is 0 if } \mu_y = 4.$$

$$-\text{ So we have a critical value at } (\mu_y = 2, \mu_y = 4)$$

So we have a critical value at $(\mu_x = 2, \mu_y = 4)$.

Multivariable Case: Analytically

<u>Step Two</u>: Evaluate critical value using the second derivative, but we have a wrinkle here because we have two variables. We're going to end up with a $2x^2$ Hessian matrix.

$$\mathbf{H} = \left(\begin{array}{cc} \frac{\partial^2 I}{\partial \mu_x \partial \mu_x}(2,4) = -1 & \frac{\partial^2 I}{\partial \mu_x \partial \mu_y}(2,4) = & 0\\ \frac{\partial^2 I}{\partial \mu_y \partial \mu_x}(2,4) = & 0 & \frac{\partial^2 I}{\partial \mu_y \partial \mu_y}(2,4) = -1 \end{array}\right)$$

It turns out that the key issue here for determining whether we have a maximum settles on whether the Hessian matrix is negative or positive definite (or something else). Define $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

1. negative definite: $\mathbf{a}'\mathbf{H}\mathbf{a} < 0$ for all $\mathbf{a} \neq \mathbf{0} \rightarrow \text{maximum}$.

2. positive definite: $\mathbf{a'Ha} > 0$ for all $\mathbf{a} \neq 0 \rightarrow$ minimum. Our example is easy: $\mathbf{a'Ha} = (-a_1 \ -a_2)\binom{a_1}{a_2} = -a_1^2 - a_2^2$. So we're **negative definite**.

Multivariate Case: Numerically

$$I(\mu_x, \mu_y | x, y) = -\frac{1}{2} \left[(2 - \mu_x)^2 + (4 - \mu_y)^2 \right]$$

э

```
$par
[1] 2 4
$value
[1] -4.930381e-31
. . .
$convergence
[1] 0
. . .
$hessian
               [,1]
                               [,2]
[1,] -1.000000e+00 -2.646978e-17
[2,] -2.646978e-17 -1.000000e+00
```

< ロ > < 同 > < 回 > < 回 > .

3

optim() Techniques in Practice

You can always test these techniques on some function.

Section 3: Optimization

イロト イポト イラト イラト

Figure: Plotting the Wild Function

Section 3: Optimization

< ロ > < 部 > < 注 > < 注 >

æ

Section 3: Optimization

<ロ> (日) (日) (日) (日) (日)

out <- optim(par = 50, fkt, method="SANN", control=list(maxit=20000, temp=20, parscale=20)) points(out\$par, out\$val, pch = 8, col = "red", cex = 2)

Section 3: Optimization

< ロ > < 同 > < 回 > < 回 >

Outline

2 Optimizating Univariate Functions
 Analytic Optimization
 Numerical Optimization

3 Optimizing Multivariate Functions

4 A Full Example

Section 3: Optimization

Putting It All Together

Suppose we have some count data (number of coups in a year).

We can use a Poisson distribution to model the data (we will learn more about Poisson later).

 $Y_i \sim_{iid} \text{Poisson}(\lambda)$

We want to find λ , which is the mean of the Poisson distribution.

The PMF (discrete) for the data is

$$p(\mathbf{y}|\lambda) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$$

Section 3: Optimization

< ロ > < 同 > < 回 > < 回 > :

Since $L(\theta|y) = p(y|\theta)$, we have

$$L(\lambda|\mathbf{y}) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$$

To make the math easier, we will take the log-likelihood.

$$l(\lambda|\mathbf{y}) = \sum_{i=1}^{n} (y_i \ln \lambda - \lambda - \ln y_i!)$$

We can drop all terms that don't depend on λ (because likelihood is a relative concept and is invariant to shifts).

$$l(\lambda|\mathbf{y}) = \sum_{i=1}^{n} (y_i \ln \lambda) - n\lambda$$

Section 3: Optimization

< ロ > < 同 > < 回 > < 回 > :

Why Can We Use the Log-likelihood?

э

Finding the Maximum Likelihood Estimate (MLE)

Remember that to find our MLE, we want to find the value of the parameter(s) that maximizes our log-likelihood.

$$l(\lambda|\mathbf{y}) = \sum_{i=1}^{n} (y_i \ln \lambda) - n\lambda$$

We need to set the derivative (known as the score function) to zero and solve for λ .

$$\frac{\partial I(\lambda | \mathbf{y})}{\partial \lambda} = S(\theta) = \frac{\sum_{i=1}^{n} y_i}{\lambda} - n$$
$$0 = \frac{\sum_{i=1}^{n} y_i}{\lambda} - n$$
$$\hat{\lambda} = \frac{\sum_{i=1}^{n} y_i}{n}$$

Section 3: Optimization

Maximum Likelihood In R

Write our log-likelihood function:

$$l(\lambda|\mathbf{y}) = \sum_{i=1}^{n} (y_i \ln \lambda) - n\lambda$$

Find the maximum (with sample data)

```
> data <- rpois(1000, 5)
> opt <- optim(par = 2, fn = ll.poisson, method = "BFGS", control = list(fnscale = -1),
+ y = data)$par
> mle <- exp(opt)
> mle
[1] 4.996001
```

イロン 不同 とくほう イロン

3